题目内容

12.如图,已知∠A=∠C,AD⊥BE,BC⊥BE,点E,D,C在同一条直线上.
(1)判断AB与CD的位置关系,并说明理由.
(2)若∠ABC=120°,求∠BEC的度数.

分析 (1)先根据AD⊥BE,BC⊥BE得出AD∥BC,故可得出∠ADE=∠C,再由∠A=∠C得出∠ADE=∠A,故可得出结论;
(2)由AB∥CD得出∠C的度数,再由直角三角形的性质可得出结论.

解答 解:(1)AB∥CD.
理由:∵AD⊥BE,BC⊥BE,
∴AD∥BC,
∴∠ADE=∠C.
∵∠A=∠C,
∴∠ADE=∠A,
∴AB∥CD;

(2)∵AB∥CD,∠ABC=120°,
∴∠C=180°-120°=60°,
∴∠BEC=90°-60°=30°.

点评 本题考查的是平行线的判定与性质,先根据题意得出AD∥BC是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网