题目内容
7.分析 过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.
解答 解:如图,过点O作MN,MN⊥AB于M,交CD于N,![]()
∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=2,
∴OM=OE=2,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=2,
∴MN=OM+ON=4,
即AB与CD之间的距离是4.
故答案为:4.
点评 此题主要考查了角平分线的性质和平行线之间的距离的应用,要熟练掌握,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.
练习册系列答案
相关题目
17.如图,四条表示方向的射线中,表示北偏西30°的是( )
| A. | B. | C. | D. |
2.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
下列结论:
(1)ac<0;
(2)抛物线顶点坐标为(1,5);
(3)3是方程ax2+(b-1)x+c=0的一个根;
(4)当-1<x<3时,ax2+(b-1)x+c>0.
其中正确的个数为( )
| x | -1 | 0 | 1 | 3 |
| y | -1 | 3 | 5 | 3 |
(1)ac<0;
(2)抛物线顶点坐标为(1,5);
(3)3是方程ax2+(b-1)x+c=0的一个根;
(4)当-1<x<3时,ax2+(b-1)x+c>0.
其中正确的个数为( )
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
16.若a,b,c为三角形的三边,则下列各组数据中,不能组成直角三角形的是( )
| A. | a=8,b=15,c=17 | B. | a=3,b=5,c=4 | C. | a=14,b=48,c=49 | D. | a=9,b=40,c=41 |