ÌâÄ¿ÄÚÈÝ
9£®£¨1£©Çó·´±ÈÀýº¯Êýy1=$\frac{{k}_{1}}{x}$£¨x£¾0£©µÄ½âÎöʽ£»
£¨2£©Éè¾¹ýC£¬DÁ½µãµÄÒ»´Îº¯Êý½âÎöʽΪy2=k2x+b£¬Çó³öÆä½âÎöʽ£¬²¢¸ù¾ÝͼÏóÖ±½Óд³öÔÚµÚÒ»ÏóÏÞÄÚ£¬µ±y2£¾y1ʱ£¬xµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©¸ù¾ÝOB¡¢ABµÄ³¤¶È¿ÉµÃ³öµãAµÄ×ø±ê£¬ÓɵãCΪÏß¶ÎOAµÄÖе㼴¿ÉµÃ³öµãCµÄ×ø±ê£¬¸ù¾ÝµãCµÄ×ø±êÀûÓ÷´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¼´¿ÉÇó³ö·´±ÈÀýº¯Êý½âÎöʽ£»
£¨2£©ÓɵãDµÄºá×ø±ê½áºÏ·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¼´¿ÉÇó³öµãDµÄ×ø±ê£¬¸ù¾ÝµãC¡¢DµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³öÒ»´Îº¯Êý½âÎöʽ£¬ÔÙ¸ù¾ÝÁ½º¯ÊýͼÏóµÄÉÏÏÂλÖùØÏµ¼´¿ÉµÃ³ö²»µÈʽµÄ½â¼¯£®
½â´ð ½â£º£¨1£©¡ßOB=4£¬AB=3£¬µãAÔÚµÚÒ»ÏóÏÞ£¬
¡àµãAµÄ×ø±êΪ£¨4£¬3£©£¬
¡ßµãCΪÏß¶ÎOAµÄÖе㣬
¡àµãCµÄ×ø±êΪ£¨2£¬$\frac{3}{2}$£©£®
¡ßµãCÔÚ·´±ÈÀýº¯Êýy1=$\frac{{k}_{1}}{x}$£¨x£¾0£©µÄͼÏóÉÏ£¬
¡àk1=2¡Á$\frac{3}{2}$=3£®
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{3}{x}$£¨x£¾0£©£®![]()
£¨2£©µ±x=4ʱ£¬y=$\frac{3}{4}$£¬
¡àµãDµÄ×ø±êΪ£¨4£¬$\frac{3}{4}$£©£®
½«C£¨2£¬$\frac{3}{2}$£©¡¢B£¨4£¬$\frac{3}{4}$£©´úÈëy2=k2x+b£¬
$\left\{\begin{array}{l}{2{k}_{2}+b=\frac{3}{2}}\\{4{k}_{2}+b=\frac{3}{4}}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{{k}_{2}=-\frac{3}{8}}\\{b=\frac{9}{4}}\end{array}\right.$£¬
¡àÒ»´Îº¯Êý½âÎöʽΪy2=-$\frac{3}{8}$x+$\frac{9}{4}$£®
¹Û²ìº¯ÊýͼÏó¿ÉÖª£ºµ±2£¼x£¼4ʱ£¬Ò»´Îº¯ÊýͼÏóÔÚ·´±ÈÀýº¯ÊýͼÏóµÄÉÏ·½£¬
¡àµ±y2£¾y1ʱ£¬xµÄȡֵ·¶Î§Îª2£¼x£¼4£®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýÓëÒ»´Îº¯ÊýµÄ½»µãÎÊÌâ¡¢·´±ÈÀýº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷ÒÔ¼°´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬¸ù¾ÝµãµÄ×ø±êÀûÓôý¶¨ÏµÊý·¨Çó³öº¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£®
| A£® | £¨x3£©2=x5 | B£® | £¨2x£©2=2x2 | C£® | £¨x+1£©3•x2=x5 | D£® | x3•x2=x5 |