题目内容

17.如图,在△ABC和△ADE中,AC=AB,AE=AD,∠CAB=∠EAD=90°
(1)求证:CE=BD;
(2)求证:CE⊥BD.

分析 (1)由已知条件证出∠CAE=∠BAD,由SAS证明△CAE≌△BAD,得出对应边相等即可;
(2)延长BD交CE于F,由全等三角形的性质得出∠ACE=∠ABD,由角的互余关系得出∠ABC+∠ACB=90°,证出∠DBC+∠BCF=90°,得出∠BFC=90°即可.

解答 (1)证明:∵∠CAB=∠EAD=90°,
∴∠CAE=∠BAD.
在△CAE和△BAD中,
$\left\{\begin{array}{l}{AC=AB}&{\;}\\{∠CAE=∠BAD}&{\;}\\{AE=AD}&{\;}\end{array}\right.$,
∴△CAE≌△BAD(SAS),
∴CE=BD.
(2)证明:延长BD交CE于F,如图所示:
∵△CAE≌△BAD,
∴∠ACE=∠ABD,
∵∠CAB=90°,
∴∠ABC+∠ACB=90°,
即∠ABD+∠DBC+∠ACB=90°,
∴∠DBC+∠ACB+∠ACE=90°,
即∠DBC+∠BCF=90°,
∴∠BFC=90°,
∴CE⊥BD.

点评 本题考查了全等三角形的判定与性质、垂线的证明方法、直角三角形的性质;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网