题目内容

在△ABC中,∠ACB=90°,D、E在AB上,且BD=BC,AE=AC,则∠DCE的度数为
 
考点:等腰三角形的性质
专题:
分析:利用等边对等角找到∠CDE、∠CED和∠ECD之间的关系,再利用∠ACB=90°和三角形内角和可得到关于∠ECD的方程,求得即可.
解答:解:∵BD=BC,AE=AC,
∴∠BCD=∠BDC,∠AEC=∠ACE,
即∠BCE+∠DCE=∠BDC,∠ACD+∠DCE=∠CDE,
∵∠DCE+∠BDC+∠AEC=180°,
∴∠BCE+∠DCE+∠ACD+∠DCE+∠DCE=180°,
又∠ACB=90°,
∴∠BCE+∠DCE+∠ACD=90°,
∴2∠DCE=180°-90°,
∴∠DCE=45°,
故答案为:45°.
点评:本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和这一隐含条件的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网