题目内容
10.(1)连接AC,证明△ACD是直角三角形;
(2)若每平方米草地造价30元,这块全部种草的费用是多少元?
分析 (1)连接AC,由勾股定理求得AC的长,由AC、AD、DC的长度关系和勾股定理的逆定理即可得出结论;
(2)四边形ABCD由Rt△ABC和Rt△DAC构成,求出四边形的面积,则容易求解.
解答 (1)证明:连接AC,如图所示:![]()
在Rt△ABC中,AC2=AB2+BC2=32+42=52,
∴AC=5.
在△DAC中,CD2=132,AD2=122,
而122+52=132,
即AC2+AD2=CD2,
∴∠DAC=90°,
即△ACD是直角三角形;
(2)解:S四边形ABCD=S△BAC+S△DAC=$\frac{1}{2}$•BC•AB+$\frac{1}{2}$DC•AC,
=$\frac{1}{2}$×4×3+$\frac{1}{2}$×12×5=36.
所以需费用36×30=1080(元);
答:这块全部种草的费用是1080元.
点评 本题考查了勾股定理及其逆定理的相关知识,通过勾股定理由边与边的关系也可证明直角三角形,这样解题较为简单.
练习册系列答案
相关题目
19.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
已知该运动服的进价为每件60元,设售价为x元.
(1)请用含x的式子表示:
①销售该运动服每件的利润是 (x-60)元;
②月销量是 (400-2x)件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
(3)若销售该运动服所得的月利润不低于8000元,请确定售价x的取值范围.
| 售价x(元/件) | 100 | 110 | 120 | 130 | … |
| 月销量y(件) | 200 | 180 | 160 | 140 | … |
(1)请用含x的式子表示:
①销售该运动服每件的利润是 (x-60)元;
②月销量是 (400-2x)件;(直接写出结果)
(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?
(3)若销售该运动服所得的月利润不低于8000元,请确定售价x的取值范围.
18.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:
(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中赚了多少钱?
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的$\frac{5}{6}$,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?
| 进价(元/台) | 售价(元/台) | |
| 电饭煲 | 200 | 250 |
| 电压锅 | 160 | 200 |
(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的$\frac{5}{6}$,问橱具店有哪几种进货方案?并说明理由;
(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?
15.能把一个三角形分成面积相等的两部分的是该三角形的( )
| A. | 角平分线 | B. | 中线 | ||
| C. | 高 | D. | 一边的垂直平分线 |
19.下列大学的校徽图案是轴对称图形的是( )
| A. | 清华大学 | B. | 北京大学 | C. | 北京人民大学 | D. | 浙江大学 |