题目内容


关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足(  )

A.a≥1   B.a>1且a≠5      C.a≥1且a≠5       D.a≠5

 


A【考点】根的判别式.

【专题】判别式法.

【分析】由于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,那么分两种情况:(1)当a﹣5=0时,方程一定有实数根;(2)当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值范围.

【解答】解:分类讨论:

①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;

②当a﹣5≠0即a≠5时,

∵关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根

∴16+4(a﹣5)≥0,

∴a≥1.

∴a的取值范围为a≥1.

故选:A.

【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网