题目内容
如图,直线a∥b,∠1=120°,则∠2的度数是( )
A. 120° B. 50° C. 80° D. 60°
已知抛物线经过点E(1,0)和F(5,0),并交y轴于D(0,-5);抛物线:(a≠0),
(1)试求抛物线的函数解析式;
(2)求证: 抛物线 与x轴一定有两个不同的交点;
(3)若a=1
①抛物线、顶点分别为 ( , )、( , ) ;当x的取值范围是_________ 时,抛物线、 上的点的纵坐标同时随横坐标增大而增大;
②已知直线MN分别与x轴、、分别交于点P(m,0)、M、N,且MN∥y轴,当1≤m≤5时,求线段MN的最大值。
已知=-2时,分式无意义;=4时,分式的值为0,则_________.
如图,直线l1∥l2,∠α=∠β,∠1=35°,则∠2=______°.
甲乙两人在相距18千米的两地,若同时出发相向而行,经2小时相遇;若同向而行,且甲比乙先出发1小时追及乙,那么在乙出发后经4小时两人相遇,求甲、乙两人的速度.设甲的速度为x千米/小时,乙的速度为y千米/小时,则可列方程组为( )
A. B. C. D.
几个相同的数码摆成一个数,并且不用任何数学运算符号(含括号),如果要使摆成的数尽可能的大,该怎样摆呢?如用3个1按上述要求摆成一个数,有如下四种形式:
①111;
②111;
③111;
④.
显然,111是这四个数中的最大的数.那么3个2有几种摆法?请找出其中的最大数.
一个三角形的两边长为3和6,若第三边取奇数,则此三角形的周长为______.
如图,⊙O的半径为1,等腰直角三角形ABC的顶点B固定且坐标为(,0),顶点A在⊙O上运动,始终保持CAB=90°,AC=AB
(1)当点A在x轴上时,求点C的坐标;
(2)当点A运动到x轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;
(3)设点A的横坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值;
(4)当直线AB与⊙O相切时,求AB所在直线对应的函数关系式.
因式分【解析】ax2-9a=_________