题目内容

观察下列各式:1+
1
3
=
4
3
=
22
3
2+
1
4
=
9
4
=
32
4
3+
1
5
=
16
5
=
42
5
4+
1
6
=
25
6
=
52
6

(1)猜想并写出第n个等式;
(2)证明你写出的等式的正确性.
考点:分式的加减法
专题:规律型
分析:(1)观察一系列等式,得到一般性规律,写出即可;
(2)等式左边通分并利用同分母分式的加法法则变形,得到结果与右边相等,得证.
解答:解:(1)1+
1
3
=
4
3
=
22
3
,2+
1
4
=
9
4
=
32
4
,3+
1
5
=
16
5
=
42
5
,4+
1
6
=
25
6
=
52
6

依此类推得:n+
1
n+2
=
(n+1)2
n+2
(n为正整数);
(2)左边=n+
1
n+2
=
n(n+2)+1
n+2
=
n2+2n+1
n+2
=
(n+1)2
n+2
=右边,得证.
点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网