题目内容
已知:如图,在△ABC中,AD、AE分别是△ABC的高和角平分线.
(1)若∠B=30°,∠C=50°,求∠DAE的度数.
(2)试问∠DAE与∠C﹣∠B有怎样的数量关系?说明理由.
先化简(1-)÷,再选一个适当的数代入求值.
如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是( )
A. a=b B. a=2b C. a=2b D. a=4b
如图,已知顶点为(-3,-6)的抛物线经过点(-1,-4),下列结论:①b2>4ac;②ax2+bx+c≥-6;③若点(-2,m),(-5,n)在抛物线上,则m>n;④关于x的一元二次方程的两根为﹣5和﹣1,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
用配方法解方程时,原方程应变形为( )
A. B. C. D.
如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为 .
如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有( )
A. 2个 B. 3个 C. 4个 D. 5个
解方程:(1)x2﹣2x=5 (2)2(x﹣3)=3x(x﹣3)
比大小: _____;-0.25______