题目内容
4.以点A为顶点作等腰Rt△ABC,等腰Rt△ADE,其中∠BAC=∠DAE=90°,如图1所示放置,使得一直角边重合,连接BD、CE.(1)试判断BD、CE的数量关系,并说明理由;
(2)延长BD交CE于点F,试求∠BFC的度数;
(3)把两个等腰直角三角形按如图2放置,(1)中的结论是否仍成立?请说明理由.
分析 (1)根据SAS证明△EAC与△DAB全等,再利用全等三角形的性质解答即可;
(2)利用全等三角形的性质得出∠ECA=∠DBA,进而解答即可;
(3)根据(1)(2)中的证明步骤解答即可.
解答 解:(1)CE=BD,理由如下:
∵等腰Rt△ABC,等腰Rt△ADE,
∴AE=AD,AC=AB,
在△EAC与△DAB中,$\left\{\begin{array}{l}{AE=AD}&{\;}\\{∠EAC=∠DAB=90°}&{\;}\\{AC=AB}&{\;}\end{array}\right.$,
∴△EAC≌△DAB(SAS),
∴CE=BD;
(2)∵△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECA+∠CBF=∠DBA+∠CBF=45°,
∴∠ECA+∠CBF+∠DCB=45°+45°=90°,
∴∠BFC=180°-90°=90°;
(3)成立,
∵等腰Rt△ABC,等腰Rt△ADE,
∴AE=AD,AC=AB,
在△EAC与△DAB中,$\left\{\begin{array}{l}{AE=AD}&{\;}\\{∠EAC=∠DAB=90°}&{\;}\\{AC=AB}&{\;}\end{array}\right.$,
∴△EAC≌△DAB(SAS),
∴CE=BD;
∵△EAC≌△DAB,
∴∠ECA=∠DBA,
∴∠ECA+∠CBF=∠DBA+∠CBF=45°,
∴∠ECA+∠CBF+∠DCB=45°+45°=90°,
∴∠BFC=180°-90°=90°.
点评 本题主要考查了全等三角形的判定及其性质、等腰直角三角形的性质,解题的关键是牢固掌握全等三角形的判定及其性质知识点.
练习册系列答案
相关题目
9.据萧山区劳动保障局统计,到“十一五”末,全区累计参加各类养老保险总人数达到88.2万人,比“十五”末增加37.7万人,参加各类医疗保险总人数达到130.5万人,将数据130.5万用科学记数法(精确到十万位)表示为( )
| A. | 1.3×102 | B. | 1.305×106 | C. | 1.3×106 | D. | 1.3×105 |
13.次数为3的单项式可以是( )
| A. | 3ab | B. | ab2 | C. | a2+b2 | D. | a3b |