题目内容
若sinA=
,则cos(90°-A)= .
| 2 |
| 3 |
考点:互余两角三角函数的关系
专题:
分析:根据一个角的正弦值等于它的余角的余弦值即可求解.
解答:解:∵∠A与∠90°-A互余,
∴cos(90°-A)=sinA=
.
故答案为
.
∴cos(90°-A)=sinA=
| 2 |
| 3 |
故答案为
| 2 |
| 3 |
点评:此题考查的是互余两角三角函数的关系:在直角三角形中,∠A+∠B=90°时,正余弦之间的关系为:
①一个角的正弦值等于这个角的余角的余弦值,即sinA=(90°-∠A);
②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°-∠A);
也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.
①一个角的正弦值等于这个角的余角的余弦值,即sinA=(90°-∠A);
②一个角的余弦值等于这个角的余角的正弦值,即cosA=sin(90°-∠A);
也可以理解成若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.
练习册系列答案
相关题目
| A、-b | B、a |
| C、-2b | D、2a-b |
| A、5对 | B、4对 | C、3对 | D、2对 |
方程y=1-x与3x+2y=5的公共解是( )
A、
| |||||
B、
| |||||
C、
| |||||
D、
|