题目内容

6.已知直线y=x-3与函数y=$\frac{2}{x}$的图象相交于点(a,b),则代数式a2+b2的值是(  )
A.13B.11C.7D.5

分析 利用反比例函数与一次函数的交点问题得到b=a-3,b=$\frac{2}{a}$,则a-b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a-b)2+2ab,然后利用整体代入的方法计算即可.

解答 解:根据题意得b=a-3,b=$\frac{2}{a}$,
所以a-b=3,ab=2,
所以a2+b2=(a-b)2+2ab=32+2×2=13.
故选A.

点评 本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网