题目内容
将x=
代入反比例函数y=-
中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去.
(1)完成下表
| y1 | y2 | y3 | y4 | y5 |
解:(1)x=
,y1=-
=-
;x=-
+1=-
,y2=-
=2;x=2+1=3,y3=-
;x=-
+1=
,y4=-
=-
;x=-
+1=-
,y5=-
=2,
填表如图所示:
(2)由(1)计算结果可知,结果依次为:-
,2,-
,-
,2,…,三个数循环,
所以,y2004=y668×3=y3=-
,
故答案为:-
.
分析:(1)根据规律计算,依次求出y1、y2、y3、y4、y5;
(2)由(1)计算的结果,发现循环规律,由此求y2004.
点评:本题主要考查反比函数的定义,关键是理解题意,根据题目所给出的规律计算,观察计算结果,得出循环规律.
填表如图所示:
| y1 | y2 | y3 | y4 | y5 |
| 2 | - | - | 2 |
所以,y2004=y668×3=y3=-
故答案为:-
分析:(1)根据规律计算,依次求出y1、y2、y3、y4、y5;
(2)由(1)计算的结果,发现循环规律,由此求y2004.
点评:本题主要考查反比函数的定义,关键是理解题意,根据题目所给出的规律计算,观察计算结果,得出循环规律.
练习册系列答案
相关题目
将x=
代入反比例函数y=﹣
中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去.
(1)完成下表
|
y1 |
y2 |
y3 |
y4 |
y5 |
|
|
|
|
|
|
(2)观察上表,你发现了什么规律?猜想y2004= .