题目内容
若二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0)、(x2,0),且x1<x2,图象上有一点M(x0,y0),在x轴下方,则下列判断正确的是( )
|
| A. | a(x0﹣x1)(x0﹣x2)<0 | B. | a>0 |
|
| C. | b2﹣4ac≥0 | D. | x1<x0<x2 |
A解:A、当a>0时,
∵点M(x0,y0),在x轴下方,
∴x1<x0<x2,
∴x0﹣x1>0,x0﹣x2<0,
∴a(x0﹣x1)(x0﹣x2)<0;
当a<0时,若点M在对称轴的左侧,则x0<x1<x2,
∴x0﹣x1<0,x0﹣x2<0,
∴a(x0﹣x1)(x0﹣x2)<0;
若点M在对称轴的右侧,则x1<x2<x0,
∴x0﹣x1>0,x0﹣x2>0,
∴a(x0﹣x1)(x0﹣x2)<0;
综上所述,a(x0﹣x1)(x0﹣x2)<0,故本选项正确;
B、a的符号不能确定,故本选项错误;
C、∵函数图象与x轴有两个交点,∴△>0,故本选项错误;
D、x1、x0、x2的大小无法确定,故本选项错误.
练习册系列答案
相关题目
2015年某中学举行的春季田径径运动会上,参加男子跳高的15名运动员的成绩如表所示:
| 成绩(m) | 1.80 | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 |
| 人数 | 1 | 2 | 4 | 3 | 3 | 2 |
这些运动员跳高成绩的中位数和众数分别是( )
|
| A. | 1.70m,1.65m | B. | 1.70m,1.70m | C. | 1.65m,1.60m | D. | 3,4 |