题目内容

20.已知方程组$\left\{\begin{array}{l}2x+y=2-m\\ x+2y=2\end{array}\right.$的解x,y满足x>0,y>0,则m的取值范围是-2<m<1.

分析 把m看做已知数表示出方程组的解,根据x与y都大于0,求出m的范围即可.

解答 解:$\left\{\begin{array}{l}{2x+y=2-m①}\\{x+2y=2②}\end{array}\right.$,
①×2-②得:3x=2-2m,即x=$\frac{2-2m}{3}$,
②×2-①得:3y=2+m,即y=$\frac{2+m}{3}$,
根据x>0,y>0,得$\left\{\begin{array}{l}{\frac{2-2m}{3}>0}\\{\frac{2+m}{3}>0}\end{array}\right.$,
解得:-2<m<1,
故答案为:-2<m<1

点评 此题考查了二元一次方程组的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网