题目内容
如图,为了测量楼的高度,自楼的顶部A看地面上的一点B,俯角为30°,已知地面上的这点与楼的水平距离BC为30m,那么楼的高度AC为 m(结果保留根号).
已知二次函数y=﹣(x+h)2,当x<﹣3时,y随x增大而增大,当x>0时,y随x增大而减小,且h满足h2﹣2h﹣3=0,则当x=0时,y的值为( )
A.﹣1 B.1 C.﹣9 D.9
画出该几何体的三视图:
顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( )
①平行四边形; ②菱形; ③等腰梯形; ④对角线互相垂直的四边形.
A.①③ B.②③ C.③④ D.②④
计算:
(1)sin45°﹣sin60°﹣2tan45°;
(2).
抛物线y=x2﹣2x﹣3与x轴的交点个数是( )
A.0个 B.1个 C.2个 D.3个
如图①,抛物线y=ax2上有一点C,CA⊥y轴于点A,直线l:y=﹣1垂直于y轴,CB⊥l于点B,且CA=CB=2,点A的坐标是(0,1).
(1)求抛物线的解析式;
(2)如图②,若点P是抛物线上的任意一点,PD⊥l,垂足为D,则总有PA=PD吗?请经过计算验证你的结论;
(3)在(2)的条件下,连接AD,当△PAD是等边三角形时,求点P的坐标.
如图,在平面直角坐标系中,若△ABC与△A1B1C1关于E点成中心对称,则对称中心E点的坐标是( )
A.(3,﹣1) B.(0,0) C.(2,﹣1) D.(﹣1,3)
已知|m|=4,|n|=5且n<0,则m+n= .