题目内容

如图,已知:△ABC、△DEA是两个全等的等腰直角三角形,∠BAC=∠D=90°,两条直角边AB、AD重合,把AD绕点A逆时针旋转α角(0°<α<90°),到如图所示的位置时,BC分别与AD、AE相交于点F、G,则图中
共有(  )对相似三角形.
A、1B、2C、3D、4
考点:相似三角形的判定
专题:
分析:根据已知及相似三角形的判定方法进行分析,从而得到答案.
解答:解:∵△ABC与△DEA是两个全等的等腰直角三角形,∠BAC=∠EDA=90°,
∴∠C=∠B=∠DAE=∠E=45°,
∵∠CFA=∠B+∠FAB,∠GAB=∠FAG+∠FAB,
∴∠CFA=∠BAG,
∴△CAF∽△BGA,
∴△BGA∽△AGF∽△CAF;
还有△ABC≌△DEA,
∴相似三角形共有4对.
故选:D.
点评:本题考查了相似三角形的判定:①有两个对应角相等的三角形相;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网