ÌâÄ¿ÄÚÈÝ
4£®ÔĶÁ²ÄÁÏ£ººÚ°×Ë«ÐÛ£¬×ݺὺþ£¬Ë«½£ºÏèµ£¬ÌìÏÂÎ޵У¬ÕâÊÇÎäÏÀС˵Öеij£¼ûÃèÊö£¬ÆäÒâÖ¸Á½¸öÈ˺ÏÔÚÒ»Æð£¬È¡³¤²¹¶Ì£¬ÍþÁ¦Îޱȣ®ÔÚ¶þ´Î¸ùʽÖÐÒ²ÓÐÕâÑùÏศÏà³ÉµÄÀý×Ó£®È磨2+$\sqrt{3}$£©£¨2-$\sqrt{3}$£©=22-£¨-$\sqrt{3}$£©2=1£¬£¨$\sqrt{5}$+$\sqrt{2}$£©£¨$\sqrt{5}$-$\sqrt{2}$£©=£¨$\sqrt{5}$£©2-£¨$\sqrt{2}$£©2=3£¬ËüÃǵĻýÊÇÓÐÀíÊý£¬ÎÒÃÇ˵ÕâÁ½¸ö¶þ´Î¸ùʽ»¥ÎªÓÐÀí»¯Òòʽ£¬ÆäÖÐÒ»¸öÊÇÁíÒ»¸öµÄÓÐÀíÊýÒòËØ£®ÓÚÊÇ£¬ÎÒÃÇ¿ÉÒÔ½«ÏÂÃæµÄʽ×Ó»¯¼ò£º
$\frac{1}{2-\sqrt{3}}$=$\frac{2+\sqrt{3}}{£¨2-\sqrt{3}£©£¨2+\sqrt{3}£©}$=2+$\sqrt{3}$
½â¾öÎÊÌ⣺
£¨1£©4+$\sqrt{7}$µÄÒ»¸öÓÐÀí»¯ÒòʽÊÇ4-$\sqrt{7}$£®
£¨2£©¼ÆË㣺$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$+¡+$\frac{1}{\sqrt{2017}+\sqrt{2015}}$£®
·ÖÎö £¨1£©Ð´³öÔʽµÄÒ»¸öÓÐÀí»¯Òòʽ¼´¿É£»
£¨2£©Ôʽ¸÷Ïî·ÖĸÓÐÀí»¯ºó£¬¼ÆËã¼´¿ÉµÃµ½½á¹û£®
½â´ð ½â£º£¨1£©4+$\sqrt{7}$µÄÒ»¸öÓÐÀí»¯ÒòʽÊÇ4-$\sqrt{7}$£»
¹Ê´ð°¸Îª£º4-$\sqrt{7}$£»
£¨2£©Ôʽ=$\frac{1}{2}$£¨$\sqrt{3}$-1+$\sqrt{5}$-$\sqrt{3}$+$\sqrt{7}$-$\sqrt{5}$+¡+$\sqrt{2017}$-$\sqrt{2015}$£©=$\frac{\sqrt{2017}-1}{2}$£®
µãÆÀ ´ËÌ⿼²éÁË·ÖĸÓÐÀí»¯£¬ÕýÈ·Ñ¡ÔñÁ½¸ö¶þ´Î¸ùʽ£¬Ê¹ËüÃǵĻý·ûºÏƽ·½²î¹«Ê½Êǽâ´ðÎÊÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®ÈçͼËù·´Ó³µÄÁ½¸öÁ¿ÖУ¬ÆäÖÐyÊÇxµÄº¯ÊýµÄ¸öÊýÓУ¨¡¡¡¡£©

| A£® | 4¸ö | B£® | 3¸ö | C£® | 2¸ö | D£® | 1¸ö |
13£®»¯¼ò$\frac{{x}^{2}}{x-1}$-x+1µÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{x-1}$ | B£® | $\frac{1}{1-x}$ | C£® | $\frac{1-2x}{x-1}$ | D£® | $\frac{2x-1}{x-1}$ |