题目内容

如图,已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.试说明:(1)△ABP≌△AEQ;(2)EF=BF.
考点:全等三角形的判定与性质
专题:几何图形问题,证明题
分析:(1)根据等边三角形的性质可以得出AB=AE,AP=AQ,由等式的性质就可以得出∠BAP=∠EAQ,就可以得出结论;
(2)由△ABP≌△AEQ就可以得出∠ABP=∠AEQ=90°,进而可以得出∠FBE=FEB=30°,就可以得出EF=BF;
解答:解:(1)∵△ABE和△APQ是等边三角形,
∴AB=AE,AP=AQ,∠BAE=∠PAQ=∠ABE=∠AEB=60°,
∴∠BAE-∠PAE=∠PAQ-∠PAE,
∴∠BAP=∠EAQ.
在△ABP和△AEQ中,
AB=AE
∠BAP=∠EAQ
AP=AQ

∴△QAE≌△PAB(SAS);

(2)∵△QAE≌△PAB
∴∠ABP=∠AEQ=90°.
∴∠AEF=90°,
∴∠ABP=∠AEF
∴∠ABP-∠AEB=∠AEF-∠ABE,
∴∠BEF=∠EBF,
∴BF=EF.
点评:本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网