题目内容

13.如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.
(1)求证:PO平分∠APC;
(2)连接DB,若∠C=30°,求证:DB∥AC.

分析 (1)连接OB,根据角平分线性质定理的逆定理,即可解答;
(2)先证明△ODB是等边三角形,得到∠OBD=60°,再由∠DBP=∠C,即可得到DB∥AC.

解答 解:(1)如图,连接OB,

∵PA,PB是⊙O的切线,
∴OA⊥AP,OB⊥BP,
又OA=OB,
∴PO平分∠APC;

(2)∵OA⊥AP,OB⊥BP,
∴∠CAP=∠OBP=90°,
∵∠C=30°,
∴∠APC=90°-∠C=90°-30°=60°,
∵PO平分∠APC,
∴∠OPC=$\frac{1}{2}$∠APC=$\frac{1}{2}×60°$=30°,
∴∠POB=90°-∠OPC=90°-30°=60°,
又OD=OB,
∴△ODB是等边三角形,
∴∠OBD=60°,
∴∠DBP=∠OBP-∠OBD=90°-60°=30°,
∴∠DBP=∠C,
∴DB∥AC.

点评 本题考查了切线的性质,角平分线的判定,等边三角形的判定和性质,解本题的关键是判断出△ODB是等边三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网