题目内容

16.如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE于G点,交DF于F点,CE交DF于H点,交BE于E点.
求证:△EBC≌△FDA.

分析 由平行四边形的性质得出AD=BC,AD∥BC,由平行四边形的判定方法易证四边形BMDK和四边形AJCN是平行四边形,得出∠FAD=∠ECB,∠ADF=∠EBC,进而证明△EBC≌△FDA.

解答 证明:如图所示:
∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∵AF∥CE,BE∥DF,
∴四边形BMDK和四边形AJCN是平行四边形,
∴∠FAD=∠ECB,∠ADF=∠EBC,
在△EBC和△FDA中,$\left\{\begin{array}{l}{∠EBC=∠ADF}&{\;}\\{BC=AD}&{\;}\\{∠BCE=∠DAF}&{\;}\end{array}\right.$,
∴△EBC≌△FDA(ASA).

点评 本题考查了平行四边形的判定与性质以及全等三角形的判定;熟练掌握平行四边形的判定与性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网