题目内容
△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是
- A.80°
- B.160°
- C.100°
- D.80°或100°
D
分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠AB′C的度数.
解答:
解:如图,∵∠AOC=160°,
∴∠ABC=
∠AOC=
×160°=80°,
∵∠ABC+∠AB′C=180°,
∴∠AB′C=180°-∠ABC=180°-80°=100°.
∴∠ABC的度数是:80°或100°.
故选D.
点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.
分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠AB′C的度数.
解答:
∴∠ABC=
∵∠ABC+∠AB′C=180°,
∴∠AB′C=180°-∠ABC=180°-80°=100°.
∴∠ABC的度数是:80°或100°.
故选D.
点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.
练习册系列答案
相关题目