题目内容

以O为圆心,1为半径作圆.△ABC为⊙O的内接正三角形,P为弧AC的三等分点,则PA2+PB2+PC2的值为
 
分析:由以O为圆心,1为半径作圆,△ABC为⊙O的内接正三角形,即可得∠BAC=∠ABC=60°,AB=AC=BC=
3
,又由P为弧AC的三等分点,即可得各角的度数,然后根据正弦定理,即可求得PA,PB,PC的值,又由三角函数的性质,即可求得PA2+PB2+PC2的值.
解答:精英家教网解:∵以O为圆心,1为半径作圆,△ABC为⊙O的内接正三角形,
∴∠BAC=∠ABC=60°,AB=AC=BC=
3

∴∠APB=∠ACB=60°,∠BPC=∠BAC=60°,
∵P为弧AC的三等分点,
∴∠ABP=
1
3
∠ABC=20°,
∴∠PBC=40°,
∴∠PAC=∠PBC=40°,
∴∠PAB=∠BAC+∠PAC=100°,
PA
sin∠ABP
=
PB
sin∠PAB
=
AB
sin∠APB
PC
sin∠PBC
=
BC
sin∠BPC

PA
sin20°
=
PB
sin100°
=
AB
sin60°
PC
sin40°
=
BC
sin60°

AB
sin60°
=
3
3
2
=2,
∴PA=2sin20°,PB=2sin100°,PC=2sin40°,
∴PA2+PB2+PC2=4[sin220+sin280+sin240]=4[
1-cos40°
2
+
1-cos160°
2
+
1-cos80°
2
]=4[
3
2
-cos(60°-20°)+cos20°-cos(60°+20°)]=6.
故答案为:6.
点评:此题考查了圆的内角正三角形的性质,弧的三等分点的性质以及正弦定理等知识.此题难度较大,解题的关键是正确应用正弦定理以及三角函数的性质,注意数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网