题目内容

如图,△ABC是等腰直角三角形,BD平分∠ABC,DE⊥BC于点E,且BC=10cm,则△DCE的周长为
 
cm.
考点:角平分线的性质,等腰直角三角形
专题:
分析:根据等腰直角三角形和角平分线性质得出AD=DE,∠A=∠BED=90°,∠ABD=∠EBD,根据AAS证△ABD≌△EBD,推出AB=BE,求出△DCE的周长=DE+EC+CD=BC,即可得出答案.
解答:解:∵△ABC是等腰直角三角形,BD平分∠ABC,DE⊥BC,
∴AD=DE,∠A=∠BED=90°,∠ABD=∠EBD,
在△ABD和△EBD中
∠ABD=∠EBD
∠A=∠BED
BD=BD

∴△ABD≌△EBD,
∴AB=BE,
∵AB=AC,
∴BE=AC,
∴△DCE的周长=DE+EC+CD=AD+EC+DC=AC+EC=BE+EC=BC=10cm,
故答案为:10.
点评:本题考查了全等三角形的性质和判定和角平分线性质的应用,解此题的关键是求出AD=DE,AC=BE,注意:角平分线上的点到角两边的距离相等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网