题目内容
8.方程组$\left\{\begin{array}{l}3x+y=3\\-4x-y=3\end{array}\right.$的解是( )| A. | $\left\{\begin{array}{l}x=0\\ y=3\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=0\\ y=-3\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=6\\ y=-15\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=-6\\ y=21\end{array}\right.$ |
分析 先用加减消元法求出x的值,再用代入消元法求出y的值即可.
解答 解:$\left\{\begin{array}{l}3x+y=3①\\-4x-y=3②\end{array}\right.$,①+②得,-x=6,解得x=-6,
把x=-6代入①得,-18+y=3,解得y=21.
所以方程组的$\left\{\begin{array}{l}x=-6\\ y=21\end{array}\right.$.
故选D.
点评 本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.
练习册系列答案
相关题目
19.若点P在y轴的右侧,距离每条坐标轴都是1个单位长度,则P的坐标为( )
| A. | (1,1) | B. | (-1,1) | C. | (1,-1) | D. | (1,1)或(1,-1) |
3.设a>b,则下列各式中错误的是( )
| A. | a+2>b+2 | B. | a-3>b-3 | C. | -2a>-2b | D. | $\frac{a}{3}$>$\frac{b}{3}$ |