题目内容
10.某单位要招聘1名英语翻译,张敏参加招聘考试的成绩如表所示:| 听 | 说 | 读 | 写 | |
| 张敏得分 | 90 | 80 | 83 | 82 |
| A. | 82 | B. | 83 | C. | 84 | D. | 85 |
分析 根据加权平均数的计算公式进行计算即可.
解答 解:张敏的平均成绩为:(90×3+80×3+83×2+82×2)÷10=84;
故选:C.
点评 此题考查了加权平均数的计算公式,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
练习册系列答案
相关题目
15.某公司购进某种水果的成本为20元/千克,经过市场调研发现,这种水果在未来48天的销售价格p(元/千克)与时间t(天)之间的函数关系式为
p=$\left\{\begin{array}{l}{\frac{1}{4}t+30(1≤t≤24,t为整数)}\\{-\frac{1}{2}t+48(25≤t≤48,t为整数)}\end{array}\right.$,且其日销售量y(千克)与时间t(天)的关系如下表:
(1)已知y与t之间的变化规律符合一次函数关系,试求在第30天的日销售量是多少?
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1千克水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.
p=$\left\{\begin{array}{l}{\frac{1}{4}t+30(1≤t≤24,t为整数)}\\{-\frac{1}{2}t+48(25≤t≤48,t为整数)}\end{array}\right.$,且其日销售量y(千克)与时间t(天)的关系如下表:
| 时间t/天 | 1 | 3 | 6 | 10 | 20 | 40 | … |
| 日销售量y/千克 | 118 | 114 | 108 | 100 | 80 | 40 | … |
(2)问哪一天的销售利润最大?最大日销售利润为多少?
(3)在实际销售的前24天中,公司决定每销售1千克水果就捐赠n元利润(n<9)给“精准扶贫”对象.现发现:在前24天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围.
2.下列方程中,一定是关于x的一元二次方程的是( )
| A. | x2+1=0 | B. | ax2+bx+c=0 | C. | ($\frac{1}{x}$)2+($\frac{1}{x}$)-3=0 | D. | x2+3x-$\frac{{x}^{2}}{x}$=0 |