题目内容
已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____.
y=x2﹣2x﹣3 【解析】先求出y=x2-2x+1和y=2x-2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(-1,0),接着利用点C和点C′关于x轴对称得到C(1,-4),则可设顶点式y=a(x-1)2-4然后把A点代入求出a的值即可得到原抛物线解析式. 【解析】 ∵y=x2-2x+1=(x+1)2,∴点A的坐标为(-1,0), 解方程...若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为_____.
查看答案右图是“靠右侧通道行驶”的交通标志,若将图案绕其中心顺时针旋转90°,则得到的图案是“ ”的交通标志(不画图案,只填含义).
![]()
三角形两边长分别为3和6,第三边是方程x2﹣13x+36=0的根,则三角形的周长为 .
查看答案二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣
,y2)、点C(
,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
![]()
A. 2个 B. 3个 C. 4个 D. 5个
查看答案如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
![]()
A. 50° B. 60° C. 70° D. 80°
查看答案 试题属性- 题型:填空题
- 难度:中等
一次函数y=(m2﹣4)x+(1﹣m)和y=(m﹣1)x+m2﹣3的图象与y轴分别交于点P和点Q,若点P与点Q关于x轴对称,则m=________
-1 【解析】试题解析::∵y=(m2-4)x+(1-m)和y=(m-1)x+m2-3的图象与y轴分别交于点P和点Q, ∴P(0,1-m),Q(0,m2-3) 又∵P点和Q点关于x轴对称 ∴可得:1-m=-(m2-3) 解得:m=2或m=-1. ∵y=(m2-4)x+(1-m)是一次函数, ∴m2-4≠0, ∴m≠±2, ∴m=-1.如图,在△ABC中,∠BAC=90°,AB=AC,∠BAD=30°,AD=AE,则∠EDC的度数是______.
![]()
如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=60°,∠A=68°,AB=13cm,则∠F= ______度,DE= ____cm.
![]()
“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形,如图,其直角三角形的两条直角边的长分别是2和4,则小正方形与大正方形的面积比是( )
![]()
A. 1:2 B. 1:4 C. 1:5 D. 1:10
查看答案如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,若BC=18,DE=8,则△BCE的面积等于( )
![]()
A. 36 B. 54 C. 63 D. 72
查看答案如图,在△ABC中,∠B=∠C,AD为△ABC的中线,那么下列结论错误的是( )
![]()
A. △ABD≌△ACD B. AD为△ABC的高线 C. AD为△ABC的角平分线 D. △ABC是等边三角形
查看答案 试题属性- 题型:填空题
- 难度:困难
已知x+12平方根是±
,2x+y﹣6的立方根是2,求3xy的算术平方根.
已知:|a﹣1|+|b+2|=0,求2a+b的值.
查看答案如图,一个正五棱柱的底面边长为2cm,高为4cm。
![]()
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有
的代数式表示
棱柱的顶点数、面数、与棱的条数。
在等式的括号内填上恰当的项,x2﹣y2+8y﹣4=x2﹣(___________).
查看答案如果关于x的多项式x2﹣kx+9是一个完全平方式,那么k=________.
查看答案若a的相反数是﹣3,b的绝对值是4,则a+b=________.
查看答案 试题属性- 题型:解答题
- 难度:中等
若(a+1)2+|b﹣2|=0,化简a(x2y+xy2)﹣b(x2y﹣xy2)的结果为( )
A.3x2y B.﹣3x2y+xy2 C.﹣3x2y+3xy2 D.3x2y﹣xy2
B 【解析】 试题分析:利用非负数的性质求出a与b的值,代入原式,去括号合并即可得到结果. 【解析】 ∵(a+1)2+|b﹣2|=0, ∴a+1=0,b﹣2=0,即a=﹣1,b=2, 则原式=﹣(x2y+xy2)﹣2(x2y﹣xy2)=﹣x2y﹣xy2﹣2x2y+2xy2=﹣3x2y+xy2. 故选B给出条件:①两条直线相交成直角;②两条直线互相垂直;③一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )
A. 能 B. 不能 C. 有的能有的不能 D. 无法确定
查看答案已知|3x|﹣y=0,|x|=1,则y的值等于( )
A. 3或﹣3 B. 11 C. -3 D. 3
查看答案现有四种说法:①-a表示负数; ②若|x|=-x,则x<0; ③绝对值最小的有理数是0;④3×102x2y是5次单项式;其中正确的是( )
A. ① B. ② C. ③ D. ④
查看答案在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐上,且点A(0,2),点C(
,0),如图所示:抛物线
经过点B。
![]()
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由。
查看答案操作:在△ABC中,AC=BC=2,∠C=90°,将一块等腰三角形板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。图①,②,③是旋转三角板得到的图形中的3种情况。研究:
(1)三角板ABC绕点P旋转,观察线段PD和PE之间有什么数量关系?并结合图②加以证明。
(2)三角板ABC绕点P旋转,△PBE是否能为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。(图④不用)
![]()
- 题型:单选题
- 难度:简单
某公司草坪的护栏是由50段形状相同的抛物线组成的,为牢固起见,每段护栏需按间距0.4m加设不锈钢管(如图)做成立柱,为了计算所需不锈钢管立柱的总长度,设计人员测得如图所示的数据.
(1)求此抛物线的解析式;
(2)计算所需不锈钢管的总长度.
![]()
某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?
查看答案如图,正方形ABCD与正方形A1B1C1D1关于某点中心对称,已知A, D1,D三点的坐标分别是(0,4),(0,3),(0,2).
![]()
(1)对称中心的坐标;
(2)写出顶点B, C, B1 , C1的坐标.
查看答案实践与操作:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角,请根据上述规定解答下列问题:
(1)请写出一个有一个旋转角是90°旋转对称图形,这个图形可以是_____;
(2)尺规作图:在图中的等边三角形内部作出一个图形,使作出的图形和这个等边三角形构成的整体既是一个旋转对称图形又是一个轴对称图形(作出的图形用实线,作图过程用虚线,保留痕迹,不写做法).
![]()
解一元二次方程
(1)x2﹣2x﹣1=0
(2)(2x﹣3)2=(x+2)2.
查看答案已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为_____.
查看答案 试题属性- 题型:解答题
- 难度:中等
如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是( )
![]()
A. 50° B. 60° C. 70° D. 80°
C 【解析】试题分析:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,∴∠BCB′=∠ACA′=20°,∵AC⊥A′B′,∴∠BAC=∠A′=90°﹣20°=70°.故选C.关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是( )
A. k≤
B. k<
C. k≥
D. k>![]()
抛物线y=﹣
x2﹣x的顶点坐标是( )
A. (1,﹣
) B. (﹣1,
) C. (
,﹣1) D. (1,0)
4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是( )
![]()
A.第一张、第二张
B.第二张、第三张
C.第三张、第四张
D.第四张、第一张
查看答案已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
| … |
| 0 | 1 | 3 | … |
| … |
| 1 | 3 | 1 | … |
则下列判断中正确的是( )
A. 抛物线开口向上 B. 抛物线与
轴交于负半轴
C. 当x=4时,y>0 D. 方程ax2+bx+c=0的正根在3与4之间
查看答案对于抛物线y=-
(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(-1,3);④x>1时,y随x的增大而减小,其中正确结论的个数是( )
A.1 B.2 C.3 D.4
查看答案 试题属性- 题型:单选题
- 难度:中等
一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是( )
![]()
A.
B.
C.
D.![]()
已知函数:①y=ax2;②y=3(x﹣1)2+2;③y=(x+3)2﹣2x2;④y=
+x.其中,二次函数的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案杭州市从
年
月
日开始实行阶梯电价制,居民上生活用电价格方案如下:(本题不考虑峰谷电)
档次 | 全年的用电量 | 电价(单位:元/度) |
第一档 |
|
|
第二档 |
|
|
第三档 |
|
|
(
)小王家
年全年的用电量是
度,请计算小王家这年的电费付了多少元?
(
)小李家
年
月份这个月的用电量是
度,小李算出它们家的电费是
元,而供电局却收了小李家的电费
元,你知道其中的奥秘吗?请你来解释下.
(
)小张家
年全年用电量为
度,请用含
的代数式表示小张家全年应交的总电费,并把结果化简.
化简与求值:
(
)已知当
时,代数式
值为
,求代数式
的值.
(
)已知
,代数式
的值.
(
)若多项式
是关于
,
的四次二项式,求代数式
的值.
如图1,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长.
(2)图中阴影部分是一个正方形
,求出阴影部分的面积及其边长.
(3)把正方形
放到数轴上,如图
,使得
与
重合,点
与
重合,点
与点
关于
点对称,那么
在数轴上表示的数为__________;点
在数轴上表示的数为__________.
![]()
![]()
把六张形状大小完全相同的小长方形卡片(其中较短的一边长为
厘米,如图
)不重叠地放在一个底面为长方形(长为
厘米,宽为
厘米)的盒子底部(如图
),盒子底面未被卡片覆盖的部分分别用
,
表示,请观察图形,回答问题:
(
)求矩形
的长和宽(用含
或
的代数式表示).
(
)当图中两块长方形阴影部分
,
的周长和(用含
或
的代数式表示).
![]()
![]()
- 题型:单选题
- 难度:中等
某工厂有煤
吨,计划每天用煤
吨.实际每天节约用煤
吨,那么这些煤可比原计划多用( ).
A.
天 B.
天 C.
天 D.
天
如果
,
,那么
约等于( ).
A.
B.
C.
D. ![]()
下列各组中.是同类项的是( ).
①
与
;②
与
;③
与
;④
与
.
A. ①②③ B. ①③④ C. ②③④ D. ①②④
查看答案比较数
,
,
,
的共同点,它们都是( ).
A. 分数 B. 有理数 C. 无理数 D. 正数
查看答案数轴上表示
的点
的位置应在( ).
A.
与
之间 B.
与
之间 C.
与
之间 D.
与
之间
的平方根是 ( )
A. 4 B.
C.
D. ![]()
- 题型:单选题
- 难度:中等