ÌâÄ¿ÄÚÈÝ
8£®Èçͼ1£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=8m£¬BC=6m£¬µãPÓÉCµã³ö·¢ÒÔ2m/sµÄËÙ¶ÈÏòÖÕµãAÔÈËÙÒÆ¶¯£¬Í¬Ê±µãQÓɵãB³ö·¢ÒÔ1m/sµÄËÙ¶ÈÏòÖÕµãCÔÈËÙÒÆ¶¯£¬µ±Ò»¸öµãµ½´ïÖÕµãʱÁíÒ»¸öµãÒ²ËæÖ®Í£Ö¹ÒÆ¶¯£®£¨1£©¾¹ý¼¸Ãë¡÷PCQµÄÃæ»ýΪ¡÷ACBµÄÃæ»ýµÄ$\frac{1}{3}$£¿
£¨2£©¾¹ý¼¸Ã룬¡÷PCQÓë¡÷ACBÏàËÆ£¿
£¨3£©Èçͼ2£¬ÉèCDΪ¡÷ACBµÄÖÐÏߣ¬ÄÇôÔÚÔ˶¯µÄ¹ý³ÌÖУ¬PQÓëCDÓпÉÄÜ»¥Ïà´¹Ö±Âð£¿ÈôÓпÉÄÜ£¬Çó³öÔ˶¯µÄʱ¼ä£»ÈôûÓпÉÄÜ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©·Ö±ð±íʾ³öÏß¶ÎPCºÍÏß¶ÎCQµÄ³¤ºóÀûÓÃS¡÷PCQ=$\frac{1}{3}$S¡÷ABCÁгö·½³ÌÇó½â£»
£¨2£©ÉèÔ˶¯Ê±¼äΪts£¬¡÷PCQÓë¡÷ACBÏàËÆ£¬µ±¡÷PCQÓë¡÷ACBÏàËÆÊ±£¬¿ÉÖª¡ÏCPQ=¡ÏA»ò¡ÏCPQ=¡ÏB£¬ÔòÓÐ$\frac{CP}{CA}$=$\frac{CQ}{CB}$»ò$\frac{CP}{CB}$=$\frac{CQ}{CA}$£¬·Ö±ð´úÈë¿ÉµÃµ½¹ØÓÚtµÄ·½³Ì£¬¿ÉÇóµÃtµÄÖµ£»
£¨3£©ÉèÔ˶¯Ê±¼äΪys£¬PQÓëCD»¥Ïà´¹Ö±£¬¸ù¾ÝÖ±½ÇÈý½ÇÐÎб±ßÉϵÄÖÐÏßµÄÐÔÖÊÒÔ¼°µÈÑüÈý½ÇÐεÄÐÔÖʵóö¡ÏACD=¡ÏA£¬¡ÏBCD=¡ÏB£¬ÔÙÖ¤Ã÷¡÷PCQ¡×¡÷BCA£¬ÄÇô$\frac{PC}{BC}$=$\frac{CQ}{AC}$£¬ÒÀ´ËÁгö±ÈÀýʽ$\frac{2y}{6}$=$\frac{6-y}{8}$£¬½â·½³Ì¼´¿É£®
½â´ð ½â£º£¨1£©Éè¾¹ýxÃë¡÷PCQµÄÃæ»ýΪ¡÷ACBµÄÃæ»ýµÄ$\frac{1}{3}$£¬
ÓÉÌâÒâµÃ£ºPC=2xm£¬CQ=£¨6-x£©m£¬
Ôò$\frac{1}{2}$¡Á2x£¨6-x£©=$\frac{1}{3}$¡Á$\frac{1}{2}$¡Á8¡Á6£¬
½âµÃ£ºx=2»òx=4£®
¹Ê¾¹ý2Ãë»ò4Ã룬¡÷PCQµÄÃæ»ýΪ¡÷ACBµÄÃæ»ýµÄ$\frac{1}{3}$£»
£¨2£©ÉèÔ˶¯Ê±¼äΪts£¬¡÷PCQÓë¡÷ACBÏàËÆ£®
µ±¡÷PCQÓë¡÷ACBÏàËÆÊ±£¬ÔòÓÐ$\frac{CP}{CA}$=$\frac{CQ}{CB}$»ò$\frac{CP}{CB}$=$\frac{CQ}{CA}$£¬
ËùÒÔ$\frac{2t}{8}$=$\frac{6-t}{6}$£¬»ò$\frac{2t}{6}$=$\frac{6-t}{8}$£¬
½âµÃt=$\frac{12}{5}$£¬»òt=$\frac{18}{11}$£®
Òò´Ë£¬¾¹ý$\frac{12}{5}$Ãë»ò$\frac{18}{11}$Ã룬¡÷OCQÓë¡÷ACBÏàËÆ£»
£¨ 3£©ÓпÉÄÜ£®
Óɹ´¹É¶¨ÀíµÃAB=10£®
¡ßCDΪ¡÷ACBµÄÖÐÏߣ¬
¡à¡ÏACD=¡ÏA£¬¡ÏBCD=¡ÏB£¬
ÓÖPQ¡ÍCD£¬
¡à¡ÏCPQ=¡ÏB£¬
¡à¡÷PCQ¡×¡÷BCA£¬
¡à$\frac{PC}{BC}$=$\frac{CQ}{AC}$£¬$\frac{2y}{6}$=$\frac{6-y}{8}$£¬
½âµÃy=$\frac{18}{11}$£®
Òò´Ë£¬¾¹ý$\frac{18}{11}$Ã룬PQ¡ÍCD£®
µãÆÀ ±¾Ì⿼²éÁËÒ»Ôª¶þ´Î·½³ÌµÄÓ¦Óã¬ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬Èý½ÇÐεÄÃæ»ý£¬¹´¹É¶¨Àí£¬Ö±½ÇÈý½ÇÐΡ¢µÈÑüÈý½ÇÐεÄÐÔÖÊ£¬½âÌâ¹Ø¼üÊÇÒª¶Á¶®ÌâÄ¿µÄÒâ˼£¬¸ù¾ÝÌâÄ¿¸ø³öµÄÌõ¼þ£¬ÕÒ³öºÏÊʵĵÈÁ¿¹ØÏµ£¬Áгö·½³Ì£¬ÔÙÇó½â£®
| A£® | ÔÚ¡ÏAOBÄÚ | B£® | ÔÚ¡ÏAOBÍâ | C£® | ÔÚ¡ÏAOBµÄÄÚ»òÍâ | D£® | ÓпÉÄÜÓëOAÖØºÏ |