题目内容

3.如图,在Rt△ABO中,∠AOB=90°,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线长PQ的最小值是(  )
A.A$\sqrt{6}$B.$\sqrt{7}$C.2$\sqrt{2}$D.3

分析 连接OP,OQ,由PQ为圆O的切线,利用切线的性质得到OQ与PQ垂直,利用勾股定理列出关系式,由OP最小时,PQ最短,根据垂线段最短得到OP垂直于AB时最短,利用面积法求出此时OP的值,再利用勾股定理即可求出PQ的最短值.

解答 解:连接OP、OQ,如图所示,
∵PQ是⊙O的切线,
∴OQ⊥PQ,
根据勾股定理知:PQ2=OP2-OQ2
∴当PO⊥AB时,线段PQ最短,
∵在Rt△AOB中,OA=OB=4,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=4$\sqrt{2}$,
∴S△AOB=$\frac{1}{2}$OA•OB=$\frac{1}{2}$AB•OP,即OP=$\frac{OA•OB}{AB}$=2$\sqrt{2}$,
∴PQ=$\sqrt{O{P}^{2}-O{Q}^{2}}$=$\sqrt{(2\sqrt{2})^{2}-{1}^{2}}$=$\sqrt{7}$,
故选B.

点评 此题考查了切线的性质,勾股定理的应用,熟练掌握切线的性质是解本题的关键,注意:圆的切线垂直于过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网