题目内容
如图,在□ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F处.若△FDE的周长为8cm,△FCB的周长为20cm,则FC的长为________.
下列现象中属于平移的是( )
A. 升降电梯从一楼升到五楼 B. 闹钟的钟摆运动
C. 树叶从树上随风飘落 D. 方向盘的转动
(1)计算
(2)解方程组
在平面直角坐标系中,点P(﹣1,2)的位置在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.
(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?
②是否存在满足条件的点P,使得PC=?(不需说明理由).
如果m是从0,1,2,3四个数中任取的一个数,n是从0,1,2三个数中任取的一个数,那么关于x的一元二次方程x2-2mx+n2=0有实数根的概率为______.
如图,在等腰Rt△ABC中,∠BAC=90°,D是AC的中点,CE⊥BD于点E,交BA的延长线于点F.若BF=12,则△FBC的面积为( )
A. 40 B. 46 C. 48 D. 50
计算: 3a•(-2b)2÷6ab.
已知A=a+2,B=2a2-3a+10,C=a2+5a-3,
(1)求证:无论a为何值,A-B<0成立,并指出A,B的大小关系;
(2)请分析A与C的大小关系.