题目内容

5.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.

分析 (1)能.首先证明四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即60-4t=2t,解方程即可解决问题;
(2)分三种情形讨论即可.

解答 (1)证明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四边形AEFD为平行四边形,
当AE=AD时,四边形AEFD为菱形,
即60-4t=2t,解得t=10.
∴当t=10秒时,四边形AEFD为菱形.     

(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=$\frac{1}{2}$AE=t,
又AD=60-4t,即60-4t=t,解得t=12;
②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,
∴AD=2AE,即60-4t=4t,解得t=$\frac{15}{2}$.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=$\frac{15}{2}$或12秒时,△DEF为直角三角形.

点评 本题考查平行四边形的判定和性质、菱形的判定、直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网