题目内容
如图,AB//CD ,直线EF分别交AB、CD于点E、F,EG平分∠BEF,如果∠EFG=64°,那么∠EGD的大小是( )
A. 122° B. 124° C. 120° D. 126°
如图,已知∠1=∠2,∠3=∠4,求证:BC∥EF。
用反证法证明命题“三角形中至少有一个内角小于或等于60°”时,首先应该假设这个三角形中( ).
A. 每一个内角都大于60° B. 每一个内角都小于60°
C. 有一个内角大于60° D. 有一个内角小于60°
已知正多边形的边长为a,且它的一个外角是其内角的一半,那么此正多边形的边心距是_________.(用含字母a的代数式表示).
方程组的解是________.
如图,正方形ABCD的边长为6,点E是边AB上一点,点P是对角线BD上一点,且PE⊥PC.
⑴ 求证:PC=PE;
⑵ 若BE=2,求PB的长.
如图,矩形ABCD中,AB=14,AD=8,点E是CD的中点,DG平分∠ADC交AB于点G,过点A作AF⊥DG于点F,连接EF,则EF的长为_________.
下列图形中,是中心对称图形的是 ( )
A. B. C. D.
如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:
①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;
③作射线AG,交BC边于点D.则∠ADC的度数为( )
A.40° B.55° C.65° D.75°