题目内容

设a为质数,并且7a2+8和8a2+7也都是质数,若记x=77a+8,y=88a+7,则在以下情况中,必定成立的是(  )
分析:本题可分当质数a=3时和质数a异于3时,进行分类讨论,可得问题答案.
解答:解:∵①当a=3时,7a2+8=71与8a2+7=79皆为质数,而x=77a+8=239,y=88a+7=271都是质数;
②当质数a异于3时,则a2被3除余1,设a2=3n+1,于是7a2+8=21n+15,8a2+7=24n+15,它们都不是质数,与条件矛盾,
故由①②可知x,y都是质数.
故选A.
点评:本题考查了质数和合数,质数又称素数.指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数.换句话说,只有两个正因数(1和自己)的自然数即为素数.比1大但不是素数的数称为合数.1和0既非素数也非合数.素数在数论中有着很重要的地位;合数是指:①两个数之间的最大公因数只是1的那两个数的乘积;②两个数之间的公约数不只是1,用其中一个约数乘以最小的数,能整除,乘出来的那个数就是合数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网