题目内容
【题目】《张丘建算经》是一部数学问题集,其内容、范围与《九章算术》相仿.其中提出并解决了一个在数学史上非常著名的不定方程问题,通常称为“百鸡问题”:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一,凡百钱买鸡百只,问鸡翁、母、雏各几何.”(译文:公鸡每只值五文钱,母鸡每只值三文钱,小鸡每三只值一文钱,现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?)若买得公鸡和母鸡之和不超过20只,且买得公鸡数不低于母鸡数,则此时买得小鸡_____只.
【答案】84.
【解析】
设公鸡买了x只,母鸡买了y只,则小鸡买了(100﹣x﹣y)只,根据“公鸡数量+母鸡数量+小鸡数量=100”列方程求正整数解,再根据公鸡和母鸡之和不超过20只分析即可.
设公鸡买了x只,母鸡买了y只,则小鸡买了(100﹣x﹣y)只,
依题意,得:5x+3y+
(100﹣x﹣y)=100,
∴y=25﹣
x.
∵x,y均为正整数,
∴
,
,
.
∵x≥y,且x+y≤20,
∴x=12,y=4,
∴100﹣x﹣y=84.
故答案为:84.
练习册系列答案
相关题目