题目内容
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2008年底拥有家庭轿车64辆,2010年底家庭轿车的拥有量达到100辆.
(1)若该小区2008年底到2011年底家庭轿车拥有量的年平均增长率都相同,求该小区到2011年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
(1)若该小区2008年底到2011年底家庭轿车拥有量的年平均增长率都相同,求该小区到2011年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.
考点:一元二次方程的应用,一元一次不等式组的应用
专题:
分析:(1)增长率的问题,用解增长率问题的模型解答;
(2)根据两种车位数量是未知数,建立等式和不等式两种关系,而车位数为整数,变无数解为有限解.方案也就出来了.
(2)根据两种车位数量是未知数,建立等式和不等式两种关系,而车位数为整数,变无数解为有限解.方案也就出来了.
解答:解:(1)设家庭轿车拥有量的年平均增长率为x,
则64(1+x)2=100
解得x=0.25=25%,或x=-2.25(不合题意,舍去)
∴100(1+25%)=125
答:该小区到2009年底家庭轿车将达到125辆;
(2)设该小区可建室内车位a个,露天车位b个,
则
由①得b=150-5a
代入②得20≤a≤
∵a是正整数
∴a=20或21
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;
方案二:室内车位21个,露天车位45个.
则64(1+x)2=100
解得x=0.25=25%,或x=-2.25(不合题意,舍去)
∴100(1+25%)=125
答:该小区到2009年底家庭轿车将达到125辆;
(2)设该小区可建室内车位a个,露天车位b个,
则
|
代入②得20≤a≤
| 150 |
| 7 |
∵a是正整数
∴a=20或21
当a=20时b=50,当a=21时b=45.
∴方案一:建室内车位20个,露天车位50个;
方案二:室内车位21个,露天车位45个.
点评:本题考查了一元二次方程的应用,解答综合题,需要由浅入深,认真读题,理解题意,合理设未知数,分步解答.
练习册系列答案
相关题目
若△ABC∽△DEF,周长比为1:4.若BC=1,则EF的长是( )
| A、2 | B、4 | C、8 | D、16 |
圆的直径为13cm,如果圆心与直线的距离是d,则( )
| A、当d=8 cm,时,直线与圆相交 |
| B、当d=4.5 cm时,直线与圆相离 |
| C、当d=6.5 cm时,直线与圆相切 |
| D、当d=13 cm时,直线与圆相切 |