题目内容

11.如图,在?ABCD中,∠B=60°,∠BCD的平分线交AD点E,若CD=3,四边形ABCE的周长为13,则BC长为5.

分析 利用平行四边形的对边相等且互相平行,进而得出DE=CD=3,再求出AE+BC=7,BC-AE=3,即可求出BC的长.

解答 解:∵CE平分∠BCD交AD边于点E,
∴∠ECD=∠ECB,
∵在平行四边形ABCD中,AD∥BC,AB=CD=3,AD=BC,∠D=∠B=60°,
∴∠DEC=∠ECB,
∴∠DEC=∠DCE,
∴DE=CD=3,
∴△CDE是等边三角形,
∴CE=CD=3,
∵四边形ABCE的周长为13,
∴AE+BC=13-3-3=7①,
∵AD-AE═DE=3,
即BC-AE=3②,
由①②得:BC=5;
故答案为:5.

点评 此题主要考查了平行四边形的性质,等腰三角形的判定;熟练掌握平行四边形的性质,证出∠DEC=∠DCE是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网