题目内容

两个大小不同的等腰直角三角形三角板按图1所示的位置放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连接DC.

(1)请找出图2中与△ABE全等的三角形,并给予证明;

(2)证明:DC⊥BE.

(1)△ACD≌△ABE.证明见解析;(2)证明见解析. 【解析】 试题分析:根据等腰直角三角形的性质利用SAS判定△ABE≌△ACD;因为全等三角形的对应角相等,所以∠ACD=∠ABE=45°,已知∠ACB=45°,所以可得到∠BCD=∠ACB+∠ACD=90°,即DC⊥BE. 试题解析:(1)【解析】 图2中△ACD≌△ABE. 证明:∵△ABC与△AED均为等腰直角...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网