题目内容

14.如图,在△ABC中,∠ABC=45°,∠BAC>90°,它的两条高AD,BE交于点F,过点F作FH∥BC交BA的延长线于点H,问AD,FH,CD之间有什么样的数量关系?并说明你的结论.

分析 结论:CD=AD+FH,先证明△ABD和△AFH都是等腰直角三角形,再证明△ADC≌△BDF得CD=DF=AD+AF=AD+FH得证.

解答 结论:CD=AD+FH,理由如下,
证明:∵AD⊥BC,BE⊥CA,
∴∠ADC=∠ADB=∠BDF=90°,
∵∠ABC=45°,
∴∠BAD=∠FAH=∠ABD=45°,
∴AD=BD,
∵FH∥BC,
∴∠H=∠ABD=45°,
∴∠H=∠FAH,
∴FH=AF,
∵∠C+∠EBC=90°,∠BFD+∠EBC=90°,
∴∠C=∠BFD,
在△ADC和△BDF中,
$\left\{\begin{array}{l}{∠C=∠BFD}\\{∠ADC=∠BDF}\\{AD=BD}\end{array}\right.$,
∴△ADC≌△BDF,
∴CD=DF=AD+AF=AD+FH.

点评 本题考查全等三角形的判定和性质、等腰三角形的性质,寻找全等三角形是解决问题的关键,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网