题目内容

方程x2+4x-1=0的根可视为函数y=x+4的图象与函数数学公式的图象交点的横坐标,那么用此方法可推断出:当m取任意正实数时,方程x3+mx-1=0的实根x0一定在_____范围内.


  1. A.
    -1<x0<0
  2. B.
    0<x0<1
  3. C.
    1<x0<2
  4. D.
    2<x0<3
B
分析:根据题意方程x3+mx-1=0的根可视为函数y=x2+m的图象与函数的图象交点的横坐标,由于当m取任意正实数时,函数y=x2+m的图象过第一、二象限,函数的图象分别在第一、三象限,得到它们的交点的横坐标为正数,观察函数图象得抛物线顶点越低,与函数的图象的交点的横坐标越大,然后求出当m=0时,y=x2的交点A的坐标为(1,1),于是得到
当m取任意正实数时,方程x3+mx-1=0的实根x0一定在0<x0<1的范围内.
解答:∵方程x3+mx-1=0变形为x2+m-=0,
∴方程x3+mx-1=0的根可视为函数y=x2+m的图象与函数的图象交点的横坐标,
∵当m取任意正实数时,函数y=x2+m的图象过第一、二象限,函数的图象分别在第一、三象限,
∴它们的交点在第一象限,即它们的交点的横坐标为正数,
∵当m取任意正实数时,函数y=x2+m的图象沿y轴上下平移,且总在x轴上方,抛物线顶点越低,与函数的图象的交点的横坐标越大,
当m=0时,y=x2的交点A的坐标为(1,1),
∴当m取任意正实数时,方程x3+mx-1=0的实根x0一定在0<x0<1的范围内.
故选B.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数解析式.也考查了阅读理解能力以及数形结合的思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网