题目内容
圆锥的底面半径为2,母线长为6,则它的侧面积为 .
已知在平面直角坐标系xoy中,点P是抛物线y=﹣x2﹣2上的一个动点,点A的坐标为(0,﹣3).
(1)如图1,直线l过点Q(0,﹣1)且平行于x轴,过P点作PB⊥l,垂足为B,连接PA,猜想PA与PB的大小关系:PA PB(填写“>”“<”或“=”),并证明你的猜想.
(2)请利用(1)的结论解决下列问题:
①如图2,设点C的坐标为(2,﹣5),连接PC,问PA+PC是否存在最小值?如果存在,请说明理由,并求出点P的坐标;如果不存在,请说明自由.
②若过动点P和点Q(0,﹣1)的直线交抛物线于另一点D,且PA=4AD,求直线PQ的解析式(图3为备用图).
将抛物线y=ax2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,﹣1),那么移动后的抛物线的关系式为 .
在平面直角坐标系中,直线y1=x+m与双曲线y2=交于点A、B,已知点A、B的横坐标为2和﹣1.
(1)求k的值及直线与x轴的交点坐标;
(2)直线y=2x交双曲线y=于点C、D(点C在第一象限)求点C、D的坐标;
(3)设直线y=ax+b与双曲线y=(ak≠0)的两个交点的横坐标为x1、x2,直线与 x轴交点的横坐标为x0,结合(1)、(2)中的结果,猜想x1、x2、x0之间的等量关系并证明你的猜想.
(1)计算:.
(2)化简(a+b)2﹣(a+2b)(a﹣2b)﹣2a(a﹣3b).
一元二次方程x2+bx+c=0有一个根为x=2,则二次函数y=2x2﹣bx﹣c的图象必过点( )
A.(2,12) B.(2,0) C.(﹣2,12) D.(﹣2,0)
如图,在平面直角坐标系中直线y=x﹣2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).
(1)求反比例函数的关系式;
(2)将直线y=x﹣2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式.
函数y=的自变量x的取值范围是 .
二次函数 y=ax2+bx+c(a≠0)的图象经过点A(4,0),B(2,8),且以x=1为对称轴.
(1)求此函数的解析式,并作出它的示意图;
(2)当0<x<4时,写出y的取值范围;
(3)结合图象直接写出不等式ax2+bx+c>0(a≠0)的解集.