题目内容

9.如图,点A、B分别在x轴的负半轴和y轴的正半轴上,点C(2,-2),CA、CB分别交坐标轴于D、E,CA⊥AB,且CA=AB.
(1)求点B的坐标;
(2)如图2,连接DE,求证:BD-AE=DE;
(3)如图3,若点F为(4,0),点P在第一象限内,连接PF,过P作PM⊥PF交y轴于点M,在PM上截取PN=PF,连接PO、BN,过P作∠OPG=45°交BN于点G,求证:点G是BN的中点.

分析 (1)作CM⊥x轴于M,求出CM=CN=2,证△BAO≌△ACM,推出AO=CM=2,OB=AM=4,即可得出答案;
(2)在BD上截取BF=AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案.
(3)作EO⊥OP交PG的延长线于E,连接EB、EN、PB,只要证明四边形ENPB是平行四边形就可以了.

解答 解:(1)作CM⊥x轴于M,
∵C(2,-2),
∴CM=2,OM=2,
∵AB⊥AC,
∴∠BAC=∠AOB=∠CMA=90°,
∴∠BAO+∠CAM=90°,∠CAM+∠ACM=90°,
∴∠BAO=∠ACM,
在△BAO和△ACM中,
$\left\{\begin{array}{l}{∠BAO=∠ACM}\\{∠AOB=∠CMA}\\{AB=AC}\end{array}\right.$,
∴△BAO≌△ACM,
∴AO=CM=2,OB=AM=AO+OM=2+2=4,
∴B(0,4).

(2)证明:在BD上截取BF=AE,连AF,
∵△BAO≌△CAM,
∴∠ABF=∠CAE,
在△ABF和△ACE中,
$\left\{\begin{array}{l}{AB=AC}\\{∠ABF=∠CAE}\\{BF=AE}\end{array}\right.$,
∴△ABF≌△CAE(SAS),
∴AF=CE,∠ACE=∠BAF=45°,
∵∠BAC=90°,
∴∠FAD=45°=∠ECD,
由(1)可知OA=OM,OD∥CM,
∴AD=DC,(图1中),
在△AFD和△CED中,
$\left\{\begin{array}{l}{AD=DC}\\{∠FAD=∠ECD}\\{AF=CE}\end{array}\right.$
∴△AFD≌△CED(SAS),
∴DE=DF,
∴BD-AE=DE;
(3)如图3,作EO⊥OP交PG的延长线于E,连接EB、EN、PB,
∵∠EOP=90°,∠EPO=45°,
∴∠OEP=∠EPO=45°,
∴EO=PO,
∵∠EOP=∠BOF=90°,
∴∠EOB=∠POF,
在△EOB和△POF中,
$\left\{\begin{array}{l}{BO=OF}\\{∠EOB=∠POF}\\{OE=OP}\end{array}\right.$,
∴△EOB≌△POF,
∴EB=PF=PN,∠1=∠OFP,
∵∠2+∠PMO=180°,
∵∠MOF=∠MPF=90°,
∴∠OMP+∠OFP=180°,
∴∠2=∠OFP=∠1,
∴EB∥PN,
∵EB=PN,
∴四边形ENPB是平行四边形,
∴BG=GN,
即点G是BN中点.

点评 本题考查了全等三角形的判定和性质、平行四边形的判定和性质以及等角的余角相等,第三个问通过辅助线构造平行四边形是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网