题目内容

17.如图,四边形ABCD中,AB=AC=AD,且∠CAD=3∠BAC,若∠DBC=42°,则∠CAD=84°,∠BDC=14°.

分析 由AB=AC=AD可知点B,C,D在以A为圆心的圆上,根据圆心角和圆周角的关系即可求得.

解答 解:∵AB=AC=AD,
∴点B,C,D在以A为圆心的圆上,
∵∠DBC=42°,
∴∠CAD=2∠DBC=84°,
∵∠CAD=3∠BAC,
∴∠BAC=$\frac{1}{3}$∠CAD=28°,
∵∠BDC=$\frac{1}{2}$∠BAC,
∴∠BDC=$\frac{1}{2}$×28°=14°.
故答案为:84°,14°.

点评 本题考查了圆心角、弧、弦的关系,熟练掌握同弧所对的圆周角是圆心角的一半是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网