题目内容
在Rt△ABC中,∠C=90°,若AC=3,AB=5,则cotB= .
考点:锐角三角函数的定义,勾股定理
专题:
分析:根据勾股定理求出BC长,再解直角三角形即可.
解答:解:如图:

∵在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理得:BC=
=4,
∴cotB=
=
,
故答案为:
.
∵在Rt△ABC中,∠C=90°,AC=3,AB=5,由勾股定理得:BC=
| 52-32 |
∴cotB=
| BC |
| AC |
| 4 |
| 3 |
故答案为:
| 4 |
| 3 |
点评:本题考查了锐角三角函数的定义,勾股定理的应用,解此题的关键是求出BC长和得出cotB=
.
| BC |
| AC |
练习册系列答案
相关题目