题目内容


如图,在⊙O中,AB,CD是直径,BE是切线,B为切点,连接AD,BC,BD.

(1)求证:△ABD≌△CDB;

(2)若∠DBE=37°,求∠ADC的度数.


              (1)证明:∵AB,CD是直径,

∴∠ADB=∠CBD=90°,

在Rt△ABD和Rt△CDB中,

∴Rt△ABD和Rt△CDB(HL);

(2)解:∵BE是切线,

∴AB⊥BE,

∴∠ABE=90°,

∵∠DBE=37°,

∴∠ABD=53°,

∵OA=OD,

∴∠BAD=∠ODA=90°﹣53°=37°,

∴∠ADC的度数为37°.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网