题目内容
考点:圆内接四边形的性质,等腰三角形的性质,圆周角定理
专题:
分析:首先利用等腰三角形的性质得出∠DBC=∠DCB,进而利用圆内接四边形的性质得出∠EAD=∠DCB,再利用圆周角定理求出∠DAE与∠DAC相等.
解答:解:∠DAE与∠DAC相等,
理由:∵DB=DC,
∠DBC=∠DCB,
∵∠DAE是四边形ABCD的一个外角,
∴∠EAD=∠DCB,
∴∠DBC=∠EAD,
又∵∠DAC=∠DBC,
∴∠DAE=∠DAC.
理由:∵DB=DC,
∠DBC=∠DCB,
∵∠DAE是四边形ABCD的一个外角,
∴∠EAD=∠DCB,
∴∠DBC=∠EAD,
又∵∠DAC=∠DBC,
∴∠DAE=∠DAC.
点评:此题主要考查了等腰三角形的性质、圆内接四边形的性质、圆周角定理等知识,得出∠DBC=∠EAD是解题关键.
练习册系列答案
相关题目
| A、∠B=∠DEF |
| B、AC=DF |
| C、AB∥DE |
| D、∠A=∠D |