题目内容

已知抛物线y=ax2+bx+c(a≠0)的顶点是(2,3),抛物线与x轴两个交点间的距离是2,则a+b+c的值是
 
考点:抛物线与x轴的交点
专题:
分析:先由顶点坐标得到抛物线的对称轴为直线x=2,再根据抛物线的对称性得到抛物线与x轴两交点的坐标分别为(3,0)、(1,0),于是可设交点式y=a(x-3)(x-1)
再把顶点坐标代入计算出a,b,c即可.
解答:解:∵抛物线y=ax2+bx+c(a≠0)的顶点坐标是(2,3),
∴抛物线的对称轴为直线x=2,
∵抛物线与x轴有两个交点间的距离是2,
∴抛物线与x轴两交点的坐标分别为(3,0)、(1,0),
设抛物线的解析式为y=a(x-3)(x-1),
把(2,3)代入得a×(2-3)×(2-1)=3,解得a=-3,
∴抛物线的解析式为y=-3(x-3)(x-1)=-3x2+12x-9.
∴a+b+c=0,
故答案为:0.
点评:本题考查了待定系数法求二次函数解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网