题目内容

13.先化简,再求值:($\frac{{x}^{2}+4}{{x}^{2}-4}$-$\frac{2}{x-2}$)$÷\frac{x}{2}$,其中x=$\sqrt{2}$-2.

分析 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.

解答 解:原式=$\frac{{x}^{2}+4-2(x+2)}{(x+2)(x-2)}$•$\frac{2}{x}$=$\frac{x(x-2)}{(x+2)(x-2)}$•$\frac{2}{x}$=$\frac{2}{x+2}$,
当x=$\sqrt{2}$-2时,原式=$\sqrt{2}$.

点评 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网