题目内容

13.如图,在一坡长AB为$70\sqrt{5}$,坡度i1=1:2的山顶B处修建一座铁塔BC,小李在其对面山坡沿坡面AD向上走了25米到D处测得塔顶C的仰角为37°,已知山坡AD的坡度i2=1:0.75
(1)求点D距水平面AE的高度DH;
(2)求BC的高度.
(测角器的高度忽略不计,结果精确到0.1米,参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

分析 (1)由AD的坡度i2=1:0.75,AD=25米,利用坡度的定义求即即可求得答案;
(2)首先过点D作DF⊥BC于点F,易得四边形DHEF是矩形,然后分别解Rt△ABE与Rt△DCF,继而求得答案.

解答 解:(1)∵AD的坡度i2=1:0.75,
∴$\frac{DH}{AH}$=1:0.75=$\frac{4}{3}$,
∴$\frac{DH}{AD}$=$\frac{4}{5}$,
∵AD=25米,
∴DH=AD×$\frac{4}{5}$=20(米),
∴AH=$\sqrt{A{D}^{2}-D{H}^{2}}$=15(米),
答:点D距水平面AE的高度DH=20米;

(2)过点D作DF⊥BC于点F,
∴∠DFE=90°,
∵∠H=∠E=90°,
∴四边形DHEF是矩形,
∴EF=DH=20米,DF=EH,
∵AB为$70\sqrt{5}$米,坡度i1=1:2,
∴$\frac{BE}{AE}$=$\frac{1}{2}$,
∴$\frac{BE}{AB}$=$\frac{1}{\sqrt{5}}$,
∴BE=70米,AE=140米,
∴DF=AH+AE=155(米),
∵∠CDE=37°,
∴CF=DF•tan37°=155×0.75=116.25(米),
∴BC=CF+EF-BE=116.25+15-70=61.25(米).
答:BC的高度为61.25米.

点评 此题考查了坡度坡角以及仰角俯角问题.注意准确构造直角三角形是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网