题目内容

观察下列各式:
1
6
=
1
2
-
1
3
1
12
=
1
3
-
1
4
1
20
=
1
4
-
1
5
1
20
=
1
4
-
1
5

(1)由此可以推断
1
30
=
 

(2)请用上面的规律解方程:
1
(x-1)(x-2)
+
1
(x-2)(x-3)
+
1
(x-3)(x-4)
=
3
4
分析:(1)将30分解成为5×6,从而得出
1
30
=
1
5
-
1
6

(2)由上面的规律可得
1
(x-1)(x-2)
=
1
x-2
-
1
x-1
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
1
(x-3)(x-4)
=
1
x-4
-
1
x-3
,再解方程即可
解答:解:(1)
1
30
=
1
5
-
1
6


(2)∵
1
(x-1)(x-2)
=
1
x-2
-
1
x-1
1
(x-2)(x-3)
=
1
x-3
-
1
x-2
1
(x-3)(x-4)
=
1
x-4
-
1
x-3

∴原方程可化为
1
x-4
-
1
x-1
=
3
4

方程两边乘以(x-1)(x-4),得
即x2-5x=0
x1=5,x2=0,
检验,把x=5代入(x-1)(x-4)=4≠0,
把x=0代入(x-1)(x-4)=4≠0,
∴x1=5,x2=0,都是方程的解.
点评:本题考查了分式方程的解法,在第(2)中将
1
(x-1)(x-2)
化为
1
x-2
-
1
x-1
是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网